

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry

Tetrahedron: Asymmetry 19 (2008) 896–899

Efficient stereoselective synthesis of enantiopure 2-substituted paraconic acids

Hyun-Chul Kim and Oee-Sook Park*

Department of Chemistry, Institute for Basic Sciences, College of Natural Sciences, Chungbuk National University, Cheong ju 361-763, Chungbuk, South Korea

Received 17 January 2008; accepted 29 February 2008

Abstract—Eight enantiopure (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic acids have been synthesized. The key step was a highly stereoselective aldol reaction between an N-acyl oxazolidinone and a corresponding aldehyde. $© 2008 Elsevier Ltd. All rights reserved.$

1. Introduction

Paraconic acids are a family of chiral γ -butyrolactones with a carboxylic acid at the β -position, isolated from various species of mosses, lichens, and fungus. They possess important biological activities, such as antitumor, antibiotic, antifungal, and antibacterial.^{[1](#page-2-0)} Racemic, as well as enantioselective syntheses of several paraconic acids have already been reported.^{[2](#page-2-0)} However, many of these suffer from poor overall yields, large number of steps, and a lack of generality. Furofurans, one of the major subclasses of the lignan family, exhibit a wide variety of biological activities, such as antitumor, antihypertensive, antioxidant, inhibition of plate-activating factor (PAF), phosphodiesterase inhibitory activity on microsomal monooxygenase in insects, and pyr-enthrins insecticidal.^{[3](#page-2-0)}

Due to the important biological activities of paraconic acids, many publications have represented interesting methods for their stereoselective syntheses,^{[4](#page-2-0)} including the ring-closing methathesis of two electron deficient olefins,⁵ free radical-mediated conjugate additions,⁶ and aldol reactions of dioxones derived from tartaric acid.[7](#page-2-0) Of the furofurans, unsymmetrically substituted furofurans 1, such as $(+)$ -fargesin, $(+)$ -epimagnolin, and $(+)$ -kobusin have generated considerable and continued interest due to their unique structural characteristics and stereochemical diversity. For the synthesis of those compounds, enantiopure 2-substituted paraconic acid 2 is a key starting material (Scheme 1). Lawlor and McNamee $⁸$ $⁸$ $⁸$ reported the synthesis</sup> of trans 2-substituted paraconic acid, together with its cisisomer $(3:2$ overall $75%$).

In connection with our synthetic studies for unsymmetrically substituted furofurans, we herein report an efficient stereoselective synthesis of enantiopure 2-substituted

Scheme 1. Retrosynthetic analysis of 1.

^{*} Corresponding author. Tel.: +82 43 261 2283; fax: +82 43 267 2279; e-mail: ospark@cbnu.ac.kr

^{0957-4166/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2008.02.031

Scheme 2. Reagents and conditions: (a) *n*-BuLi, β-carbomethoxypropionyl chloride/THF, -78 °C to rt, 3 h; (b) Bu₂BOTf, DIPEA/CH₂Cl₂, -78 °C , Ar₁CHO, 20 min; (c) LiOH, $H_2O_2/THF:H_2O$, 0 °C to rt, 3 h.

Table 1. Physical and spectroscopic data of 2-substituted paraconic acids

Entry	Products	Yield ^a physicochemical properties	IR (neat, cm^{-1})	HRMS	NMR
$\mathbf{1}$	HO ₂ C	Yield: 65% mp (°C): 160-161 $[\alpha]_D^{25} = -44.2$ (c 1.0, MeOH)	3428, 1782, 1736, 1170	Calcd for $C_{12}H_{11}O_6$ 251.0556 [M+H] ⁺ , found 251.0567	¹ H NMR (300 MHz, CD ₃ OD): δ 2.97 (m, 2H), 3.41 (m, 1H), 5.56 $(d, J = 7.79 \text{ Hz}, 1H), 5.97 \text{ (s, 2H)},$ 6.72–6.92 (m, 3H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.1, 174.0, 149.6, 133.4, 121.3, 109.1, 107.4, 102.7, 84.5, 49.6, 33.5
\overline{c}	HO ₂ C MeO MeO MeO	Yield: 48% mp (°C): 143-145 α ²⁵ _D = -36.2 (c 1.0, MeOH)	3479, 1778, 1735, 1126	Calcd for $C_{14}H_{16}O_7$ 296.0896 [M+H] ⁺ , found 296.0998	¹ H NMR (300 MHz, CD ₃ OD): δ 2.70 (m, 2H), 3.33 (m, 1H), 3.77 $(s, 9H), 5.56$ (d, $J = 6.70$ Hz, 1H), 6.53 (s, 2H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.1, 174.1, 154.8, 135.8, 104.4, 104.3, 84.4, 61.1, 56.7, 56.6, 49.7, 33.4
3	$HO2$ C MeC MeO	Yield: 67% mp (°C): 178-179 $\alpha _{\text{D}}^{25} = -29.4$ (c 1.0, MeOH)	3386, 1743, 1643, 1176	Calcd for $C_{13}H_{15}O_6$ 267.0869 [M+H] ⁺ , found 267.0775	¹ H NMR (300 MHz, CDCl ₃): δ 3.02 (m, 2H), 3.44 (m, 1H), 3.81 $(d, J = 1.10 \text{ Hz}, 6\text{H})$, 5.60 (d, $J = 7.26$ Hz, 1H), 6.80 (m, 3H). ¹³ C NMR (75 MHz, CDCl ₃): δ 177.1, 173.8, 149.8, 129.9, 118.2, 111.1, 108.4, 82.1, 56.0, 48.1, 32.3
4	HO ₂ O.	Yield: $57%$ mp (°C): 119-123 $\alpha _{\text{D}}^{25} = -37.4$ (c 1.6, MeOH)	3413, 1747, 1643, 1191	Calcd for $C_{11}H_{11}O_4$ 207.0657 [M+H] ⁺ , found 207.0676	¹ H NMR (300 MHz, CD_3OD): δ 2.80 (m, 2H), 3.41 (m, 1H), 5.60 (d, $J = 7.41$ Hz, 1H), 7.30-7.391 (m, 5H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.2, 174.1, 139.9, 129.9, 129.8, 127.1, 84.4, 49.7, 33.3
$\sqrt{5}$	HO ₂ C Ō MeC	Yield: 69% mp (°C): 138-139 $\alpha _{\text{D}}^{25} = -56.0$ (c 1.6, MeOH)	3490, 1785, 1731, 1173	Calcd for $C_{12}H_{13}O_5$ 237.0763 $[M+H]^{+}$, found 237.0884	¹ H NMR (300 MHz, CDCl ₃): δ 3.02 (m, 2H), 3.41 (m, 1H), 3.80 (s, 3H), 5.60 (d, $J = 7.35$ Hz), 6.90 (m, 2H), 7.32 (m, 2H). 13 C NMR (75 MHz, CDCl ₃): 8 174.1, 173.9, 132.4, 127.1, 114.3, 113.8, 82.1, 55.4, 48.2, 32.3 (continued on next page)

Table 1 (continued)

^a Isolated yield based on compound 4.

paraconic acids 2. The key reaction is a highly stereoselective aldol reaction between an N-acyl oxazolidinone and a suitable aldehyde.

2. Results and discussion

The synthesis of (2S,3S)-2-aryl-5-oxotetrahydrofuran-3 carboxylic acids 2 was accomplished as depicted in [Scheme](#page-1-0) [2.](#page-1-0)

b-Carbomethoxypropionyl chloride was treated with freshly prepared (S) - $(-)$ -4-benzyl-2-oxazolidinone 3 (reduction of (S)-phenylalanine with sodium borohydride gave (S)-phenylalaninol, which upon treatment with anhydrous sodium carbonate in diethyl carbonate gave an oxazolidinone, 80% yield over two steps^{[9](#page-3-0)}), in the presence of n-BuLi to afford 1-(4S-benzyl-2-oxazolidin-3-yl)- 4-methoxybutane-1,4-dione 4 in 95% yield. Aldol condensation of a boron (Z) -enolate^{[10](#page-3-0)} (generated by the treatment of N-acyl oxazolidinone 4 with dibutylboron triflate^{[11](#page-3-0)} and DIPEA in CH_2Cl_2 at -78 °C), followed by treatment with the corresponding aldehyde, afforded the addition product 5 as an unstable key intermediate, which was not isolated but instead subjected to intramolecular ring cyclization to give γ -lactone 6 with 95:5 diastereomeric selectivity, which was determined on the basis of HPLC analysis.[12](#page-3-0) The chiral auxiliary was removed using lithium peroxide^{[13](#page-3-0)} to afford (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic acids 2. Eight (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic acids were prepared. Their physical and spectral data are given in [Table 1](#page-1-0).

3. Conclusion

In conclusion, we have presented a short, general, and efficient approach to the synthesis of enantiopure 2-substituted paraconic acids. By using this methodology, $(+)$ fargesin and $(+)$ -epimagnolin were synthesized.^{[14](#page-3-0)}

Acknowledgment

This work was supported by a Chungbuk National University Grant in 2007.

References

- 1. (a) Zopf, W. Liebigs Ann. Chem. 1902, 324, 39; (b) Jacobi, P. A.; Herradura, P. Tetrahedron Lett. 1996, 37, 8297.
- 2. Sibi, M. P.; Deshpande, P. K.; La Loggia, A. J. Synlett 1996, 343, and references cited therein.
- 3. (a) Thurston, L. S.; Imakyura, Y.; Haruna, M.; Li, D. H.; Liu, Z. C.; Liu, S. Y.; Cheng, Y. C.; Lee, K. H. J. Med. Chem. 1989, 32, 604; (b) Tomioka, K.; Kubota, Y.; Kawasaki, H.; Koga, K. Tetrahedron Lett. 1989, 30, 2949.
- 4. (a) Berti, F.; Felluga, F.; Forzato, C.; Furlan, G.; Nitti, P.; Pitacco, G.; Valentin, E. Tetrahedron: Asymmetry 2006, 17, 2344; (b) Chhor, R. B.; Nosse, B.; Sorgel, S.; Bohm, C.; Seitz, M.; Reiser, O. Chem. Eur. J. 2003, 9, 260.
- 5. Selvakumar, N.; Kumar, P. K.; Reddy, S. K. C.; Chary, B. C. Tetrahedron Lett. 2007, 48, 2021.
- 6. Sibi, M. P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J. J. Org. Chem. 2002, 67, 1738.
- 7. Barros, M. T.; Maycock, C. D.; Ventra, M. R. Org. Lett. 2003, 5, 4097.
- 8. Lawlor, J. M.; McNamee, M. B. Tetrahedron Lett. 1983, 24, 2211.
- 9. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77.
- 10. (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127; (b) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 114, 1047.
- 11. (a) Van Horn, D. E.; Masamune, S. Tetrahedron Lett. 1979, 24, 2229; (b) Yan, T. H.; Tan, C. W.; Lee, H. C.; Lo, H. C.; Huang, T. Y. J. Am. Chem. Soc. 1993, 115, 2613.
- 12. The HPLC was performed with a PDA max plot (210.0– 400.0 nm) on a UV detector and a 4.6-mm \times 12.5 cm C₁₈ symmetry reverse phase column that contains $5 \mu L$ packing L1. The flow rate is about 1.0 mL per min, the injection volume is $10.0 \mu L$, and the run time is 20 min , by using 20% acetonitrile and water as a gradient solvent system.
- 13. Evans, D. A.; Britton, D. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141.
- 14. Kim, H. C.; Park, O. S., in preparation.