

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry

Tetrahedron: Asymmetry 19 (2008) 896-899

Efficient stereoselective synthesis of enantiopure 2-substituted paraconic acids

Hyun-Chul Kim and Oee-Sook Park*

Department of Chemistry, Institute for Basic Sciences, College of Natural Sciences, Chungbuk National University, Cheong ju 361-763, Chungbuk, South Korea

Received 17 January 2008; accepted 29 February 2008

Abstract—Eight enantiopure (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic acids have been synthesized. The key step was a highly stereoselective aldol reaction between an *N*-acyl oxazolidinone and a corresponding aldehyde. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Paraconic acids are a family of chiral γ -butyrolactones with a carboxylic acid at the β -position, isolated from various species of *mosses, lichens*, and *fungus*. They possess important biological activities, such as antitumor, antibiotic, antifungal, and antibacterial.¹ Racemic, as well as enantioselective syntheses of several paraconic acids have already been reported.² However, many of these suffer from poor overall yields, large number of steps, and a lack of generality. Furofurans, one of the major subclasses of the lignan family, exhibit a wide variety of biological activities, such as antitumor, antihypertensive, antioxidant, inhibition of plate-activating factor (PAF), phosphodiesterase inhibitory activity on microsomal monooxygenase in insects, and pyrenthrins insecticidal.³

Due to the important biological activities of paraconic acids, many publications have represented interesting methods for their stereoselective syntheses,⁴ including the ring-closing methathesis of two electron deficient olefins,⁵ free radical-mediated conjugate additions,⁶ and aldol reactions of dioxones derived from tartaric acid.⁷ Of the furofurans, unsymmetrically substituted furofurans **1**, such as (+)-fargesin, (+)-epimagnolin, and (+)-kobusin have generated considerable and continued interest due to their unique structural characteristics and stereochemical diversity. For the synthesis of those compounds, enantiopure

2-substituted paraconic acid **2** is a key starting material (Scheme 1). Lawlor and McNamee⁸ reported the synthesis of *trans* 2-substituted paraconic acid, together with its *cis*-isomer (3:2 overall 75%).

In connection with our synthetic studies for unsymmetrically substituted furofurans, we herein report an efficient stereoselective synthesis of enantiopure 2-substituted

Scheme 1. Retrosynthetic analysis of 1.

^{*} Corresponding author. Tel.: +82 43 261 2283; fax: +82 43 267 2279; e-mail: ospark@cbnu.ac.kr

^{0957-4166/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2008.02.031

Scheme 2. Reagents and conditions: (a) *n*-BuLi, β -carbomethoxypropionyl chloride/THF, -78 °C to rt, 3 h; (b) Bu₂BOTf, DIPEA/CH₂Cl₂, -78 °C, Ar₁CHO, 20 min; (c) LiOH, H₂O₂/THF:H₂O, 0 °C to rt, 3 h.

Table 1. Physical and spectroscopic data of 2-substituted paraconic acids

Tioducts	Y leid"	IR (neat, cm ⁻¹)	HRMS	NMR
	physicochemical properties			
HO ₂ C 0 0 HO ₂ C	Yield: 65% mp (°C): 160–161 $[\alpha]_{D}^{25} = -44.2 (c \ 1.0, MeOH)$	3428, 1782, 1736, 1170	Calcd for C ₁₂ H ₁₁ O ₆ 251.0556 [M+H] ⁺ , found 251.0567	¹ H NMR (300 MHz, CD ₃ OD): δ 2.97 (m, 2H), 3.41 (m, 1H), 5.56 (d, $J = 7.79$ Hz, 1H), 5.97 (s, 2H), 6.72–6.92 (m, 3H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.1, 174.0, 149.6, 133.4, 121.3, 109.1, 107.4, 102.7, 84.5, 49.6, 33.5
MeO MeO MeO MeO	Yield: 48% mp (°C): 143–145 $[\alpha]_D^{25} = -36.2 \ (c \ 1.0, MeOH)$	3479, 1778, 1735, 1126	Calcd for $C_{14}H_{16}O_7$ 296.0896 $[M+H]^+$, found 296.0998	¹ H NMR (300 MHz, CD ₃ OD): δ 2.70 (m, 2H), 3.33 (m, 1H), 3.77 (s, 9H), 5.56 (d, <i>J</i> = 6.70 Hz, 1H), 6.53 (s, 2H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.1, 174.1, 154.8, 135.8, 104.4, 104.3, 84.4, 61.1, 56.7, 56.6, 49.7, 33.4
MeO MeO	Yield: 67% mp (°C): 178–179 $[\alpha]_D^{25} = -29.4 \ (c \ 1.0, \text{ MeOH})$	3386, 1743, 1643, 1176	Calcd for C ₁₃ H ₁₅ O ₆ 267.0869 [M+H] ⁺ , found 267.0775	¹ H NMR (300 MHz, CDCl ₃): δ 3.02 (m, 2H), 3.44 (m, 1H), 3.81 (d, $J = 1.10$ Hz, 6H), 5.60 (d, J = 7.26 Hz, 1H), 6.80 (m, 3H). ¹³ C NMR (75 MHz, CDCl ₃): δ 177.1, 173.8, 149.8, 129.9, 118.2, 111.1, 108.4, 82.1, 56.0, 48.1, 32.3
HO ₂ C	Yield: 57% mp (°C): 119–123 $[\alpha]_D^{25} = -37.4 \ (c \ 1.6, \text{ MeOH})$	3413, 1747, 1643, 1191	Calcd for $C_{11}H_{11}O_4$ 207.0657 $[M+H]^+$, found 207.0676	¹ H NMR (300 MHz, CD ₃ OD): δ 2.80 (m, 2H), 3.41 (m, 1H), 5.60 (d, $J = 7.41$ Hz, 1H), 7.30–7.391 (m, 5H). ¹³ C NMR (75 MHz, CD ₃ OD): δ 177.2, 174.1, 139.9, 129.9, 129.8, 127.1, 84.4, 49.7, 33.3
HO ₂ C MeO	Yield: 69% mp (°C): 138–139 $[\alpha]_{\rm D}^{25} = -56.0 \ (c \ 1.6, \text{ MeOH})$	3490, 1785, 1731, 1173	Calcd for $C_{12}H_{13}O_5$ 237.0763 $[M+H]^+$, found 237.0884	¹ H NMR (300 MHz, CDCl ₃): δ 3.02 (m, 2H), 3.41 (m, 1H), 3.80 (s, 3H), 5.60 (d, $J = 7.35$ Hz), 6.90 (m, 2H), 7.32 (m, 2H). ¹³ C NMR (75 MHz, CDCl ₃): δ 174.1, 173.9, 132.4, 127.1, 114.3, 113.8, 82.1, 55.4, 48.2, 32.3 (continued on next page)
	$HO_{2}C$ $(+)$	$HO_{2}C_{+} + FO_{2}C_{+} + $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

Table 1 (continued)

Entry	Products	Yield ^a physicochemical properties	IR (neat, cm ⁻¹)	HRMS	NMR
6	HO ₂ C 000	Yield: 52% mp (°C): 110–113 $[\alpha]_D^{25} = -61.1 (c \ 1.0, MeOH)$	3394, 1747, 1670, 1191	Calcd for C ₁₂ H ₁₃ O ₄ 221.0814 [M+H] ⁺ , found 221.0768	¹ H NMR (300 MHz, CDCl ₃): δ 2.40 (s, 3H), 3.05 (m, 2H), 3.30–3.44 (m, 1H), 5.60 (d, J = 6.60 Hz, 1H), 7.06–7.30 (m, 4H). ¹³ C NMR (75 MHz, CDCl ₃): δ 175.8, 174.3, 138.8, 137.6, 129.8, 128.8, 125.9, 122.5, 82.0, 48.2, 31.8, 21.4
7	HO ₂ C	Yield: 60% mp (°C): 103–106 $[\alpha]_D^{25} = -31.3$ (<i>c</i> 1.0, MeOH)	3428, 1747, 1673, 1195	Calcd for C ₁₂ H ₁₃ O ₄ 221.0814 [M+H] ⁺ , found 221.0772	¹ H NMR (300 MHz, CDCl ₃): δ 2.36 (s, 3H), 2.95 (m, 2H), 3.35 (m, 1H), 5.60 (d, $J = 6.87$ Hz, 1H), 7.12–7.26 (m, 5H). ¹³ C NMR (75 MHz, CDCl ₃): δ 175.1, 174.1, 139.1, 134.7, 129.6, 125.4, 82.1, 48.2, 32.0, 21.8
8		Yield: 46% mp (°C): 145–146 $[\alpha]_D^{25} = +15.0 \ (c \ 1.6, MeOH)$	3390, 1778, 1735, 1167	Calcd for C ₁₃ H ₁₃ O ₄ 233.0814 [M+H] ⁺ , found 233.0746	¹ H NMR (300 MHz, CDCl ₃): δ 2.70 (dd, J = 8.60, 17.7 Hz, 1H), 3.03 (dd, J = 7.20, 17.7 Hz, 1H), 3.69 (m, 1H), 5.45 (m, 1H), 6.20 (m, 1H), 6.79 (d, J = 15.8 Hz, 1H), 7.2–7.3 (m, 5H). ¹³ C NMR (75 MHz, CDCl ₃): δ 177.0, 174.5, 135.3, 134.9, 128.7, 126.9, 121.5, 79.8, 31.0, 29.7

^a Isolated yield based on compound 4.

paraconic acids **2**. The key reaction is a highly stereoselective aldol reaction between an *N*-acyl oxazolidinone and a suitable aldehyde.

2. Results and discussion

The synthesis of (2S,3S)-2-aryl-5-oxotetrahydrofuran-3carboxylic acids **2** was accomplished as depicted in Scheme 2.

β-Carbomethoxypropionyl chloride was treated with freshly prepared (S)-(-)-4-benzyl-2-oxazolidinone **3** (reduction of (S)-phenylalanine with sodium borohydride gave (S)-phenylalaninol, which upon treatment with anhydrous sodium carbonate in diethyl carbonate gave an oxazolidinone, 80% yield over two steps⁹), in the presence of *n*-BuLi to afford 1-(4S-benzyl-2-oxazolidin-3-yl)-4-methoxybutane-1,4-dione 4 in 95% yield. Aldol condensation of a boron (Z)-enolate¹⁰ (generated by the treatment of N-acyl oxazolidinone 4 with dibutylboron triflate¹¹ and DIPEA in CH_2Cl_2 at -78 °C), followed by treatment with the corresponding aldehyde, afforded the addition product 5 as an unstable key intermediate, which was not isolated but instead subjected to intramolecular ring cyclization to give γ -lactone **6** with 95:5 diastereometric selectivity, which was determined on the basis of HPLC analysis.¹² The chiral auxiliary was removed using lithium peroxide¹³ to (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic afford acids 2. Eight (2S,3S)-2-aryl-5-oxotetrahydrofuran-3-carboxylic acids were prepared. Their physical and spectral data are given in Table 1.

3. Conclusion

In conclusion, we have presented a short, general, and efficient approach to the synthesis of enantiopure 2-substituted paraconic acids. By using this methodology, (+)-fargesin and (+)-epimagnolin were synthesized.¹⁴

Acknowledgment

This work was supported by a Chungbuk National University Grant in 2007.

References

- 1. (a) Zopf, W. Liebigs Ann. Chem. 1902, 324, 39; (b) Jacobi, P. A.; Herradura, P. Tetrahedron Lett. 1996, 37, 8297.
- 2. Sibi, M. P.; Deshpande, P. K.; La Loggia, A. J. Synlett 1996, 343, and references cited therein.
- (a) Thurston, L. S.; Imakyura, Y.; Haruna, M.; Li, D. H.; Liu, Z. C.; Liu, S. Y.; Cheng, Y. C.; Lee, K. H. J. Med. Chem. 1989, 32, 604; (b) Tomioka, K.; Kubota, Y.; Kawasaki, H.; Koga, K. Tetrahedron Lett. 1989, 30, 2949.
- (a) Berti, F.; Felluga, F.; Forzato, C.; Furlan, G.; Nitti, P.; Pitacco, G.; Valentin, E. *Tetrahedron: Asymmetry* 2006, *17*, 2344; (b) Chhor, R. B.; Nosse, B.; Sorgel, S.; Bohm, C.; Seitz, M.; Reiser, O. *Chem. Eur. J.* 2003, *9*, 260.
- Selvakumar, N.; Kumar, P. K.; Reddy, S. K. C.; Chary, B. C. Tetrahedron Lett. 2007, 48, 2021.
- Sibi, M. P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J. J. Org. Chem. 2002, 67, 1738.
- 7. Barros, M. T.; Maycock, C. D.; Ventra, M. R. Org. Lett. 2003, 5, 4097.

- 8. Lawlor, J. M.; McNamee, M. B. Tetrahedron Lett. 1983, 24, 2211.
- 9. Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 77.
- (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127; (b) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 114, 1047.
- (a) Van Horn, D. E.; Masamune, S. *Tetrahedron Lett.* 1979, 24, 2229; (b) Yan, T. H.; Tan, C. W.; Lee, H. C.; Lo, H. C.; Huang, T. Y. J. Am. Chem. Soc. 1993, 115, 2613.
- 12. The HPLC was performed with a PDA max plot (210.0–400.0 nm) on a UV detector and a 4.6-mm \times 12.5 cm C₁₈ symmetry reverse phase column that contains 5 µL packing L1. The flow rate is about 1.0 mL per min, the injection volume is 10.0 µL, and the run time is 20 min, by using 20% acetonitrile and water as a gradient solvent system.
- 13. Evans, D. A.; Britton, D. C.; Ellman, J. A. *Tetrahedron Lett.* 1987, 28, 6141.
- 14. Kim, H. C.; Park, O. S., in preparation.